
 
 

 
 

An Integrated Approach to Earth Science Observation Scheduling 
 
 

 
 

Robert A. Morris, Jennifer Dungan, Jeremy Frank, Lina Khatib, David E. Smith 
NASA Ames Research Center 

Address: MS 269-1 Moffett Field CA 94035 
Email: morris@email.arc.nasa.gov 

 
 

Abstract- As the number of Earth observation 
missions grows, and the capabilities of Earth 
observing science instruments improve, the volume of 
requests for high quality science data will increase, 
and with it, the importance of effective management 
of the process of acquiring the data. This process 
includes selecting observations, storing images, and 
downlinking data to ground stations. This paper 
describes a system whose primary components are a 
central scheduler, which generates sequences of high 
priority, scientifically useful science observations for a 
fleet of earth observing satellites, and, in addition, an 
on-board schedule revision system for updating 
schedules based on predicted or observed changes in 
the utility of observations.  
 

I. INTRODUCTION 
 

The Committee on Earth Observation Satellites (CEOS) 
estimates that international space agencies are planning 
more than 80 earth observing missions over the next 15 
years. These missions will carry over 200 different 
instruments, providing measurements of many 
environmental change parameters. The commercial sector 
is also planning to launch several systems in the next five 
years that could provide complementary data [1].  
 
Current practice in mission management assigns a 
separate team of science and operations personnel for 
managing each specific mission, with very little 
coordination and communication across missions. The 
need for coordinated imaging demands a change in this 
way of managing missions, with more communication 
among mission planners.  
 
This paper describes research into the potential use of 
automated scheduling technology in addressing issues in 
coordinated science activity, focusing both on effectively 
managing the increasing volume of data, and increasing 
the scientific utility of the data acquired.  
 

II. OBSERVATION SCHEDULING 

Science observation scheduling for Earth Observing 
Satellites solves the following core problem: given a set 
of candidate observation requests, each with a priority or 
utility corresponding to an expected value of acquiring 
the corresponding image, a set of times for acquiring the 
images, and a set of constraints associated with how the 
images can be acquired, generate a set of assignments of 
observations to times that satisfies the constraints and 
maximizes the sum of the utilities of the observations. 
Constraints include  

• Solid State Recorder (SSR) capacity: an SSR can 
only store a limited amount of image data; 

• Pointing requirements (for slewable 
instruments): adequate time must be allocated 
between observations to allow an instrument to 
be slewed to the angle required by the next 
observation; and 

• Instrument duty cycle: a science instrument has 
limits on the length of time it can be turned on, 
to ensure its safety and longevity.  

 
In addition, science campaigns in the future will often 
involve data acquired from multiple imagers. For 
example, [2], the scientific question what is the role of 
clouds and aerosols in heating and cooling of the global 
climate? will be answered by radiation budget  
measurements taken by CERES, as well as identification 
of regions of subvisible cirrus taken by MODIS IR, both 
members of the PM Constellation. Such requirements for 
the coordination of science observations suggest the need 
for a scheduling system that has complete knowledge of 
the capabilities and status of a collection of instruments 
and all data requests submitted for these instruments.   
 
To be effective, a scheduling system should be able to 
revise a schedule at any time, to take account of changes 
in observation utility due to unforseen cloud cover, 
unexpected events such as floods or eruptions, new data 
requests, or unanticipated changes in satellite resources.  
Achieving these capabilities on a single ground-based 
system is not feasible.  Typical Earth observing satellites 
cannot communicate directly with each other, and can 



only communicate with ground stations about 5% to 10% 
of the time.   Because of the limited communication 
windows, a ground-based scheduler would have little or 
no opportunity to revise the schedule in response to the 
contingencies that may arise.   
 
The principle argument for an additional on-board 
scheduling capability is that the desirability of making an 
observation can change dynamically and unexpectedly, 
because of changes in meteorological conditions (e.g. 
cloud cover), unforeseen events such as fires, floods, or 
volcanic eruptions, or changes in satellite or ground 
station capability. For example, if a desired visual scene 
is completely obscured by clouds, then there is little point 
in taking it. In this case, satellite resources, such as power 
and SSR capacity can be better utilized taking another 
image that is higher quality. Likewise, if an unexpected 
but important event occurs (such as a fire, flood, or 
volcanic eruption), there may be good reason to take 
images of it, instead of expending satellite resources on 
some of the lower priority scheduled observations. 
Finally, if there is unexpected loss of capability, it may be 
impossible to carry out the schedule of planned 
observations. For example, if a ground station goes down 
temporarily, a satellite may not be able to free up enough 
SSR capacity to continue with the remaining schedule of 
observations.  
 
Therefore, we propose an architecture for a science 
observation scheduling system that consists of two main 
components: 

• A centralized scheduler for multiple satellites, 
and  

• An onboard schedule revision system for each 
individual satellite. 

These components interact as follows. A set of complete 
sequences of observations generated by the central 
scheduler is uplinked to each satellite during its 
communication window, along with a set of alternative 
observations. Once uplinked, the on-board system will 
receive inputs consisting of either updated weather 
predictions, or data analysis results, which will allow it to 
revise the expected quality of the nominal schedule. This 
revision could result in a change in the sequence of 
acquired observations, the result of choosing from the set 
of alternatives. After the data is acquired, the images are 
downlinked, and the central scheduler is notified of any 
modifications made to the nominal schedule by the 
revision system. This provides part of the input to the 
next scheduling cycle. 
 
The remainder of this paper describes each of the two 
main components of this approach in detail. 

 

III. THE CENTRAL SCHEDULER 
 
It is likely that science observation scheduling is too 
difficult to be solved in general by algorithmic techniques 
that guarantee optimality, such as branch and bound. 
Heuristic approaches to solving observation scheduling 
problems include local search (SPOT scheduler, [6]) or 
greedy constructive methods (Landsat 7 scheduler, [3]).  
 
Greedy search requires a heuristic that orders the 
decisions made by the scheduler in the process of 
building a complete, consistent schedule. In one version 
of greedy search, the heuristic informs the scheduler as to 
what request should be added next to the schedule, and 
when the observation should be taken. A common 
heuristic for ordering requests is in terms of priority, with 
higher priority requests added to the schedule first. This 
forms the basis for many of the previous heuristics used 
in observation scheduling, for example, Spot scheduling 
[6].  
 
Another heuristic we have considered for a central 
scheduler is based on contention for either observation 
start time, or space on the SSR. The idea behind this 
heuristic is that it is sometimes possible to schedule more 
observations, thereby achieving a higher quality schedule, 
if observations are ordered based on a combination of 
priority as well as how hard they are to schedule based on 
contention with other requests for the same time slots, or 
for memory on the SSR. See [7] for a detailed discussion 
of contention heuristics. 
 
Recently, advances have been made to greedy search 
techniques by adding an element of randomness to the 
selection process. An example of this is used in the 
central scheduling process. Heuristic-biased Stochastic 
Sampling (HBSS) [5] is an approach to solving constraint 
satisfaction problems such as observation scheduling. 
Instead of always making decisions based on the heuristic 
advice, HBSS probabilistically biases each decision based 
on the heuristic rankings of the possible choices, thus 
allowing for the possibility of decisions that do not 
follow heuristic advice.  The probability that the 
scheduler does follow the heuristic advice is a tunable 
parameter called the bias; the bias we used here is a 
function that maps observation priorities to the 
probability that the request will be selected next for 
scheduling. Utilization of the bias allows the scheduler to 
potentially compensate for limitations in the general 
usefulness of the heuristic, and to allow for sampling of 
the solution space. The belief is that this way of achieving 
a balance between exploration and exploitation of 
heuristic advice will yield improved schedules.    
 



Based on these ideas, the central scheduling algorithm 
can be described as follows: 
 
1. For a fixed number of samples do 
2.   Build Schedule with HBSS 
3.   Plan remaining supporting activities 
4.   Save best results 
 
The call to HBSS (2) is the first phase of the central 
scheduling process; in the second phase (3) a planner is 
called to create and schedule support activities related to 
slewing the instrument and downlinking images. Of the 
two phases, the HBSS phase is more computationally 
intensive, so we will describe it in more detail. It is 
described by the following algorithm:  
 
1. While requested observation list is not empty 
2.     Pick a request  
3.    While there are places to put the request 
4. Pick a time to take the observation  
5.            If no constraints are violated 
6.  Assign the time to the request 
7.      If the request has been assigned 
8.         Check forward 
 
This algorithm performs two varieties of constraint 
checking, backwards (step 5) and forwards (step 8). 
Backwards checking is so-named because it checks for 
constraint violations between the current assignment of 
observation to start time with previous assignments 
already made. Forward checking, by contrast, compares 
the current assignment with requests not yet selected. 
Start times that can no longer be assigned to unselected 
observations as the result of the current assignment are 
deleted from the list of possible times for those requests.  
 

IV. A SCHEDULE REVISION SYSTEM 
 
During execution, a nominal schedule produced by the 
central scheduler is to be preferred in the absence of any 
changes in the actual or expected values of observations. 
Consequently, the behavior of the schedule revision 
system will allow it to revert to the ground schedule in 
the absence of any changes in the utilities of 
observations. It is further assumed that the satellite 
receives updates on the actual value of observations just 
completed (e.g. as the result of performing a cloud cover 
analysis of the acquired data on-board), or updates on the 
expected values of observations that could be done in the 
near future (via communication with other satellites, 
forward looking instruments, or weather forecast update).  
 
The approach to on-board schedule revision is for a 
system to acquire more observations than it expects to be 

able to keep (given on-board storage capacity 
limitations), and incrementally discard those of lesser 
value, as necessary, in order to retain observations of 
higher value. This over-commitment helps ensure that a 
full complement of useful observations will be collected, 
even if later scheduled observations turn out to be of low 
value.  The bias towards acquiring observations in the 
original schedule is implemented by artificially raising 
the utility value of the pre-scheduled observations to 
guarantee they are higher than any extra observation. 
These observations are “removed” from the schedule and 
combined with the extra observations as inputs to an on-
board scheduler. 
 
The algorithm for schedule revision is the following:  
 
Inputs 

1. a complete schedule produced by a ground-
based scheduler and uplinked; 

2. a set of additional observations that were not 
scheduled, and  

3. the utility of each observation in the schedule 
and in the set of alternatives. 

 
Setup Procedure 

1. Artificially boost the utility values of 
scheduled observations by the maximum 
utility of the extra observations  

2. Remove observations from the schedule and 
combine them with the extra observations as 
requests for the on-board scheduler. 

 
For each time slot t  

1. Consider the set R of requests that can be 
scheduled at time t. 

2. Apply a lookahead strategy to assign a 
heuristic value to each request in R.  

3. While there are still requests to consider in R   
a. choose r in R that has highest 

heuristic value  
b. If SSR has sufficient capacity for r, 

acquire and assess the actual utility 
of r  

c. Else if SSR has insufficient capacity 
for r 

i. Let W be the set of past 
observations with lower 
utility than r and higher SSR 
allocation than needed 

ii. If W is not empty 
iii. Let w be a minimum 

utility in W 
iv. Discard w for SSR 

release 



v. Acquire and assess actual 
utility of r 

vi. Else remove r from R 
 
 Starting with the first execution time of requests, at any 
time, we have past time requests (either satisfied or not), 
current request(s), and future requests. The algorithm 
decides what observations to schedule out of the set of 
current requests, aiming at highest overall schedule 
utility. The loop in the algorithm represents the progress 
of observation selection and execution while “next” time 
slot t is moving along the time horizon. 
 
The algorithm is applied to a scheduling horizon starting 
at a given time slot t, and evaluates the set of requests that 
can be scheduled starting at t. At time t the SSR has a set 
of images stored from images acquired before t, and it is 
assumed that there are cloud cover analysis algorithms 
on-board that have been applied to the stored images in 
order to possibly update their utility. 
 
Step 1 of the algorithm computes the set R of all requests 
at the next time slot t that do not conflict with past 
scheduled requests. Step 2 computes a heuristic value for 
each request in R in terms of the overall utility of the 
schedule that would result from executing it. The 
heuristic value of a request r is calculated based on the 
utilities of “some” future requests that can be executed 
given that r is executed.  
 
We have considered two approaches to devising a 
lookahead policy, called fixed and variable. Briefly, a 
fixed strategy is applied to a request r with start time t, 
given a fixed lookahead depth d. A heuristic value of r is 
computed as the maximal sum of the utilities of requests 
than can be scheduled with r within the horizon 
determined by d.  The idea of a variable lookahead 
strategy emerged to solve a problem with the fixed 
approach associated with a “horizon effect”. In some 
cases it is possible, by greedily delaying an observation in 
favor of a later one with greater utility, that a more 
future-looking fixed lookahead makes worse decisions 
than a less future-looking one. A variable lookahead 
approach avoids this anomaly by making the lookahead 
horizon depend on the point of quiescence in the search 
for better schedules. If the lookahead for horizons of i, 
i+1, … i+j-1 specify the same choice for next step, it is 
highly likely that this is the best choice. i and j are 
positive integers that represent, respectively, the 
lookahead horizon at which  the quiescence starts and the 
length of the quiescence.   
 
Thus, in the variable approach, h depends on two other 
factors: RQL (Required Quiescence Length) and MLH 

(Maximum Lookahead Horizon). The value assigned to h 
corresponds to the lookahead horizon such that the past 
RQL lookahead horizons have agreed on which request is 
the one with highest heuristic value. MLH is an upper 
limit on h, in order to control the absolute length of the 
lookahead. (See [8] for more discussion.) 
 
For each request time t, the on-board scheduler uses one 
of these strategies to assign a heuristic value to each of 
the observations requested at t. Then Step 3 of the 
revision algorithm discussed earlier is performed for 
selecting observations. Step 3 applies the greedy strategy 
for schedule revision. If adding a request does not violate 
SSR capacity, it is simply added. If there is a violation, 
required storage space will be made available by 
discarding, and releasing the SSR storage space of, 
acquired images whose actual (analyzed) utility is less 
than the expected utility of the current request. If no such 
acquired images exist, then the next highest expected 
utility request in R is considered. The process repeats 
until either a request is added or there are no more 
requests left. Note that different requests may produce 
different amount of data and, as a result, require different 
amount of SSR storages. This complicates the process of 
selecting, among acquired images, the best “set” to 
discard. We attempt for one with minimum utility 
provided it has sufficient SSR release. 
 

V. EXPERIMENTS 
 

Tests have been conducted on both the central scheduler 
and the schedule revision system in order to determine 
the effectiveness of the ideas underlying the above 
approach to generating and executing high quality 
observation schedules. This section briefly discusses 
some of the results of those tests. 
 
Currently, all tests have been conducted on problems 
generated by a system that simulates orbit characteristics 
for Earth observing satellites. A problem is generated 
from a specification of a number of parameters, including  

• Number of candidate requests 
• Length of scheduling horizon 
• Number and capabilities of instruments 
• Number of ground stations available for 

downlink. 
These factors combine to determine the difficulty of the 
problem. In general, the most difficult problems (i.e., the 
ones requiring the most search to find high quality 
solutions) are those that combine a large number of 
requests, a large planning horizon and a small number of 
opportunities for downlink. In addition, slewable 
instruments tend to create more contention among 
candidate observations for viewing opportunities (i.e. 



different scenes can be viewed at the same time at 
different angles). 
 
Many of the problem instances generated were tested on a 
range of satellite models. A satellite model includes a 
specification of  

• The slew capabilities of instruments, defined as 
slew rate + maximum viewing angle off-nadir. 

• The storage capacity of the on-board Solid State 
Recorder (SSR), and  

• The duty cycle constraints on science 
instruments. 

The amount of satellite resources clearly also contribute 
to the difficulty of a given problem; in particular, a larger 
SSR means less contention for space among candidate 
requests, hence fewer potential conflicts. We have used 
the EUROPA planning system [3] for both constructing 
satellite models, and as the system for scheduling support 
activities after HBSS has made observation scheduling 
decisions. 
 
A. Central Scheduler Experiments 
 
The experiments with the central scheduler have focused 
both on the effectiveness of a sampling-based approach to 
augmenting greedy search using HBSS, and on a 
comparison between a contention-based heuristic for 
guiding greedy search and the more conventional priority 
heuristic. 
 
For the purpose of realism, our starting point for testing 
has been problem instances with sizes comparable to 
those of the Landsat 7 daily scheduling problem [3], 
scaled up for handling multiple instruments and satellites. 
A typical problem instance has 500 requests, a scheduling 
horizon of 100K seconds, on 3 to 5 satellites, each with a 
single slewable instrument with a maximum pointing 
angle of 20 degrees off-nadir, and a satellite model with 
SSR capacity of between 50 and 200 images. For these 
tests, we have typically disabled the duty cycle constraint. 
 
Runs conducted with problem instances having these 
characteristics have resulted in modest improvements in 
the quality of the schedules produced using sampling 
with HBSS (only around 1% for 20 samples is typical). 
That the results have not been more dramatic is indicative 
of the relative lack of contention for time slots in 
problems of this kind (even with large horizons, the 
average number of opportunities for a given candidate 
request is less than three, and a large number of 
candidates have only one opportunity; thus the chances 
for conflict are small). Consequently, there are very few 
optimal solutions, and good solutions tend to differ from 
one another only in a small number of assignments. 

 
Similarly, a comparison between contention-based and 
standard priority-based heuristics indicates that ordering 
based on contention can consistently result in modest 
improvement in schedule quality. This improvement is 
also influenced by the number and distribution of 
opportunities for observations. For problem instances in 
which observation opportunities are few, and contention 
is not heavy, we have found that priority alone sometimes 
works best as a heuristic. The best approach might thus 
be one in which each sample of HBSS utilizes a different 
heuristic (referred to in the literature as a “portfolio” 
approach [9]). Future tests will investigate this option. 
 
B. Schedule Revision System Experiments 
 
In order to identify the usefulness of on-board 
rescheduling, we are studying the expected gain in the 
value of observations collected over those that would be 
taken if we just followed the schedule produced on the 
ground. This, of course, depends on the frequency and 
nature of the value revisions. So, more generally, we 
would like to know the net gain in the value of 
observations collected as a function of the frequency and 
nature of value revisions. For the particular algorithm 
proposed above we would also like to know how this 
value is affected as SSR capacity changes, the ground 
schedule bias is decreased, the size of the set of 
alternatives increases, or as lookahead changes. 
 
We consider two different value revision scenarios. In the 
first, we suppose that there is on-board image analysis 
software, so that the actual value of an image is updated 
after an image is taken. With the above algorithm this 
primarily affects which observations will be discarded to 
make way for future observations. In the second scenario, 
we suppose that updates of expected value are received 
for observations to be taken in the future, as might occur 
if updated cloud cover forecasts were provided to the 
satellite. Note that this information impacts both which 
observations are taken and which ones are kept. 
 
Our current experiments involve scheduling horizons of 
up to 9 hours and problem sizes of up to 300 requests. 
Before the proposed enhancements, such problem sizes 
could not be solved in a reasonable time. A reasonable 
variable lookahead strategy turned out to be RAL=3, 
which in general outperformed one with RAL=2, while 
either RAL=2 or RAL=3 outperformed no lookahead 
(RAL=0) by about 10%. 
 
In general, a variable lookahead strategy seems to be 
faster than, and out perform, fixed lookahead. An intutive 
explanation for the speed improvement is that, in a 



variable lookahead, only a small lookahead horizon is 
needed at most steps and the maximum horizon is rarely 
reached. On the other hand, the reason that better results 
are obtained with variable lookahead is apparently the 
avoidance of the “horizon effect”. 
 
Figure 1 shows the percentage improvements, in terms of 
overall schedule utilities, when applying different types 
of lookaheads over applying no lookahead. Sample 
problems are randomly generated with horizons ranging 
from 900 to 30,000 seconds and number of requests 
ranging from 50 to 300. Negative entries show that 
applying lookahead could result in worse schedules than 
with no lookahead. Such cases appear to be rare. Note 
that the fixed lookahead with horizon 1 had 7.6% best 
improvement over no lookahead while other lookahead 
approaches were able to reach 14% improvement. 

 
Figure 1. Percentage improvements of different 
lookahead strategies. The X-axis represent various 
lookahead strategies where Fi is fixed lookahead with 
horizon i=1, 2, 3, 4 and Vj is variable lookahead with 
acquiescence length j=2, 3. The Y-axis represent 
percentage improvement, when applying the 
corresponding lookahead strategy, over applying no 
lookahead, in terms of utilities of generated schedules.  
 

VI. SUMMARY 
 

This paper has proposed a new way of managing the 
selection of science observations for collections of Earth 
observing systems with different but overlapping science 
capabilities. This approach is motivated both by expected 
future requirements for coordinated observations, and by 

expected increasing demand for high quality science data. 
It has been argued here that communication delays 
between ground station and satellite, combined with an 
uncertainty in the conditions under which the data will be 
acquired, justifies an approach to scheduling that 
combines a robust central scheduler with limited on-
board schedule revision. 

 
References 

 
[1] Exploring our Home Planet: The Earth Science 
Enterprise Strategic Plan. 
http://www.earth.nasa.gov/visions/index.html.  
 
[2] M. Schoeberl. “The Afternoon Constellation: A 
Formation of Earth Observing Systems for the 
Atmosphere and Hydrosphere”, Proceedings of IGARSS 
2002. 
 
[3] W. Potter and J. Gasch. “A Photo Album of Earth: 
Scheduling Daily Landsat 7 Activities”. Proceedings of 
SpaceOps’98, Tokyo, Japan, 1998. 
 
[4] D. Smith, J. Frank, and A. Jonsson. “Bridging the 
Gap Between Planning and Scheduling”. Knowledge 
Engineering Review, 15:1, 2000. 
 
[5] J. Bresina, “Heuristic-Biased Stochastic Sampling”, 
Proceedings of AAAI-96, Portland, OR, 1996.  
 
[6] J. Agnese, N. Bataille, E. Bensana, D. Blumstein, 
and G. Versaillie, “Exact and Approximate Methods for 
the Daily Management of an Earth Observation Satellite. 
In Proceedings of the 5th ESA Workshop on Artificial 
Intelligence and Knowledge-based Systems for Space, 
1995. 
 
[7] J. Dungan, J. Frank, A. Jonsson, R. Morris, D. Smith, 
“Planning and Scheduling for Fleets of Earth Observing 
Satellites”, Proceedings of ISAIRAS-2001, Montreal, 
CA, 2001. 
 
[8] L. Khatib, J. Frank, D. Smith, R. Morris, J. Dungan, 
“Interleaved Observation Execution and Re-Scheduling 
on Earth Observing Systems. Proceedings of the ICAPS 
Workshop on Planning and Execution, 2003, 
forthcoming.  
 
[9] C. P Gomes, and B. Selman, “Algorithm Portfolio 
Design: Theory and Practice”, Proceedings of UAI-1997. 


